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Abstract—Regular expressions and finite state automata have
been widely used in programs for pattern searching and string
matching. Unfortunately, despite the popularity, regular expres-
sions are difficult to understand and verify even for experi-
enced programmers. Conventional testing techniques remain a
challenge as large regular expressions are constantly used for
security purposes such as input validation and network intrusion
detection. In this paper, we present a lightweight verification
framework for regular expressions. In this framework, instead
of a large number of test cases, it takes in requirements in
natural language descriptions to automatically synthesize formal
specifications. By checking the equivalence between the synthe-
sized specifications and target regular expressions, errors will be
detected and counterexamples will be reported. We have built a
web application prototype and demonstrated its usability with
two case studies.

Index Terms—regular expression, verification, natural lan-
guage, formal specification, domain-specific language

I. INTRODUCTION

Regular expressions are widely used in computer programs
for pattern searching and string matching due to the high ef-
fectiveness and accuracy. A recent technical report shows that
regular expressions are used in 42% among nearly 4,000 open-
sourced Python projects [1]. Researchers have also explored
applying regular expressions to test case generations [2], [3],
[4], [5], specifications for string constraint solvers [6], [7], and
queries for some data mining framework [8]. As a foundation
for lexical analysis, regular expression (regex) has been further
applied to advanced functions for security purposes, such as
input validation [9] and network intrusion detection [10]. De-
spite its popularity, it is still considered complicated for users,
even experienced programmers, due to the low readability and
the hardness to construct correct regular expressions when the
size is as large as a single-page document. Because of the
gradually increasing adoptions of agile software development,
requirements and solutions evolve quickly, which causes the
software development more error-prone. In this situation, input
validations using regular expressions are constantly being
found inefficient due to errors in the constructed expressions,
resulting in security vulnerabilities [11], [12].

Due in part to the shared use across software development
and how susceptible regexes are to errors, many researchers
and practitioners have developed tools to support more robust
regular expression creation [12] or allow more comprehensible
verification. To verify the correctness of regular expressions,
testing is widely adopted. These techniques solve the problem
to some extent but are far from sufficient. Assisted with

various online and offline tools, e.g., regex101 [13], developers
can find errors in regular expressions through test cases.
However, this kind of heavyweight frameworks increases their
cognitive load to understand both the requirements and the
corresponding regular expressions and require a significant
amount of human labor to build test suites. In addition, it
is difficult to determine the test coverage of self-generated
test cases, especially for negative test cases and those for
the Kleene star operator. Another critical issue which makes
regular expression verification special is that developers are
usually the testers, especially when agile development is
popular in today’s industries. They implement and mostly test
a regular expression in the way that it should handle, which
unintentionally avoid testing their target in a way that might
break.

Alternative assistance is also proposed for regular expres-
sion debugging, such as visualization techniques [14], [15].
By parsing target regular expressions and representing them
in Finite State Machines, it makes the semantics of these
complex expressions more understandable. These methods
save human labor from composing test cases and increase the
readability despite the expressions without clear demarcation,
but they overlook the complexity of regular expressions, some
of which can be over twenty lines of code. The corresponding
visualized automata can be gigantic and complex for users to
comprehend. Therefore, the verification task remains difficult.

One may attempt to solve this problem with software veri-
fication. However, the regular expression verification problem
is ironic. The regular languages are in the simplest language
family in the formal language classification [16], while the
software specifications are typically written in a more expres-
sive or powerful language, e.g., first-order logic. Therefore it
is paradoxical we need to write the specification in a more
complicated language, which presumably will lead to more
error in the specification than in the program (regex).

In this study, we are interested in enabling regular ex-
pression verification with natural language descriptions. We
present a novel lightweight framework that compiles require-
ments in natural language into domain-specific formal speci-
fications that we defined and checks the consistency between
formal specifications and corresponding regular expressions
using equivalence checking. Incorrect regular expressions will
be detected when inequivalence is found and then, counterex-
amples will be synthesized. We propose this method to answer
the following questions:



e RQ1: How to verify the properties stated in the require-
ments for regular expressions?
We propose a domain-specific specification language
called Natural Expression with which we model the
requirements into automata and based on equivalence
checking, we can verify the formally specified properties
on regular expressions.

e RQ2: How to lower the entrance bar for end-users to

compose the formal specifications?

We propose a specification synthesis method with a
rule-based natural language processing (NLP) technique.
By analyzing the natural language requirements with
additional user clarifications, formal specifications are
generated automatically.

In the following part of the paper, motivated by a practical
example which demonstrates the high cost of testing and
conventional verification methods, we propose a lightweight
verification method for validating regular expressions in Sec-
tion II. Details about the design and techniques are presented
in Section III. We describe the prototype tool (free access
online and open-sourced) for the proposed framework in
Section IV and we explain how our framework can help
users to detect security vulnerabilities in two case studies in
Section V. We discuss our contributions and limitations in
Section VI. We review existing methods on regular expressions
testing and verification and present a comparative summary in
Section VII. We draw the conclusions in Section VIII.

II. MOTIVATING EXAMPLE

Regular expressions are widely used in software industries
for input validation and pattern matching, but it is still a
tough job to validate a regular expression according to its
requirements. Consider the following regular expression:

cx (a(ab) xb) dx*

The requirement is informally stated as:

There is a block of consecutive positions X such that: before
X there are only c’s; after X there are only d’s; in X, b’s
and a’s alternate; the first letter in X is an a and the last
letter is b.

To verify this regular expression, a test suite can be constructed
as follows:

my @tests = (
"cccab", "ecabd",
"cababd", "abd",

"l2eac",
"ccabd"

)i

This is a test suite which covers three positive test cases
(“cababd”, “abd”, and ‘“ccabd”) and three negative ones
(“cccab”, “ecabd”, “l12eac”). Testing requires a considerable
amount of human labor and expertise to build complete test
suites. In another word, few testers will guarantee their test
cases cover all the properties as required. Also, it is hard to
determine the test coverage, especially for negative test cases
and those for testing Kleene stars.

Using first-order logic (FOL) for software verification cre-
ates a systematic way to conservatively prove the correctness
of a piece of program if we define a language to describe
its properties, such as using the membership predicate. By

introducing the atomic predicate Q,(x), where a is a character
and x ranges over the positions of the word. In order to express
the relations between positions, we add the syntax = < y
with the semantics “position x is smaller than position y”. We
can prove that a language over a one-letter alphabet is FO-
definable if and only if it is finite or co-finite, where co-finite
means the complement of this language is finite. However,
simple expressions like {A"|n is even} is not FO-definable.
Therefore, people usually extend the verification language with
variables X,Y, Z, ... ranging over sets of positions and the
newly introduced predicate x € X means that “position x
belongs to the position set X”’. And generalize the logic to
the set of formulas over X with the expressions:

p:=Qu(x) [z <ylreX|-¢|(pVe)|3zp|3Xe.
Therefore, it empowers the verifier to verify properties for the
target regular expression with the following specifications:
Make(X) :=Vx € XVye X
(r<y—=Vz(x<zAhz<y)—z€X))
Before(z, X):=Vye Xz <y
After(z, X)) :=Vye X y<ux
Before_c(X) := Vax Before(x, X) — Q.(x)
After_d(X) :=Vx After(z, X) — Qa(x)
Alternate(X) ==V € X(Qo > Vy e X(y=2+1— Qp(v)))
ANX(Qp—VyeX(y=z+1—Qaly)))
First a(X):=Vze XVy(y<z— -y € X) = Qu(z)
Last b(X) =Ve e X Vy (y >z — -y € X) = Qu(x)

And by putting them together, we have

3X. (Make(X) A Before_c(X) N After_d(X)
A Alternate(X ) A First_a(X) A Last_b(X))

for abstract the requirements.

Observing the specifications, although the logic behind is
clear, it is not designed for light-trained end-users or even
engineers. In our study, we consider using another specifi-
cation language can be an overkill for solving this problem.
We propose a method relies on a regex-like specification
language and we validate the target regular expression with
equivalence checking. The tool works on target examples with
the following specifications:

myQspec = (
let X < [alb]x*,
X+ (?=axb)ine
lete + (7 =cx*x X.x),
e+ (?=.xXdx)in S,
)i
With these regex-like specifications, we will convert it into
automata and conduct equivalence checking on this specifi-
cation automata and target regex converted automata. If they
are equivalent, we will consider the target correct; otherwise,

we report error as either one of them is problematic. The
specifications can be more complicated for a larger regular

/in X, b’s and a’s alternate
//in X, begin in a end in b
// there are only c’s before X
// there are only d’s after X



Regex-like

Natural Language
Requirement

Specification
Synthesis

Specification
—

Success Validation
or Counterexample

Equivalence

Checking ’

Fig. 1. Framework for regex verification

expression with more properties specified in the requirements,
which requires additional professional training for the testers
that results in extra cost. To reduce the difficulty for them to
compose formal specifications, we incorporate an automatic
specification synthesis module in our framework. Because of
the versatility of natural language and seamless connection, we
propose a rule-based method to synthesize the specifications
from the requirements automatically. In another word, by
providing the specifications in natural language descriptions
similar to the commented part in the specification, one will
validate the target regular expression without extra efforts.
For this example c« (ab)+d*, our tool report Failed
with a counterexample: caabd, which is matched with the
specifications but not the target regex.

III. KEY DESIGNS

To overcome the barriers for regular expression verification,
in this paper, we propose a lightweight verification frame-
work that enables end-users to verify regular expressions
with requirements and specifications as shown in Fig. 1. The
cores lie in our framework are the Equivalence Checking
module and the Specification Synthesis module. With the target
regular expression and synthesized regex-like specifications,
we will perform equivalence checking based on an analysis
of the inclusion relation between the two regular expressions
to validate whether the specified properties hold or not. To
lower the bar of entry for specification synthesis, a rule-based
natural language processing technique is taken. We elaborate
the designs in detail in this section.

A. Regex Equivalence Checking

In our framework, we want to verify all the properties spec-
ified in the requirements hold for a given regular expression.
We can describe our goal using an algebraic notation. Let E
denote the target regular expression to be verified and R denote
the requirement specified in natural language. Therefore, we
need to validate that the target regular expression conforms to
the requirements, We denote this relationship as

EFE~R

where, ~ represents the conformation relation. We also pro-
pose to use natural language processing techniques to process
the requirements and automatically generate formal specifica-
tions S in regular language. Suppose we can get a good for-
malization from natural language to formal specification, we
still need to verify the equivalence or conformation between
the target regular expression and the specifications; that is

E=S AR ~S
We present the formal specifications in regular language, and

our goal is to check the equivalence between the regular
expression and the formal specifications. We convert both the

Algorithm 1 Inclusion of regex algorithm

: function INCLUSION(7r1, 12) > Determine 71 C 72
: F1 < parse(r1) > Parse the string to finite automata
: F> < parse(rz)

Ny <—neg(F>)
intersection < F; & N->

1

2

3

4 > Get negation
5:

6: if intersection = () then

7

8

9
10

>IfriN-re =0
return True
else
return False
end if
11: end function

specifications and the target regular expression into automata
and check their equivalence. There are existing tools that we
can leverage. Antimirov and Mosses [17] presented a rewrite
system for deciding the equivalence of two extended regular
expressions (i.e. with intersection) based on a new complete
axiomatization of the extended algebra of regular sets. It can
be used to construct an algorithm for deciding the equivalence
of two regular expressions, but the deduction system is quite
inefficient. However, converting regular expressions into finite
automata simplifies the target problem.

Essentially, we can abstract the problem as the regular ex-
pression inclusion problem. To prove two regular expressions
are equivalent, we are proving they are subset of each other;

that is

rI=re & 11 Cro, 1o Cry.

Here, a pair of regular expressions are in the C relation
if and only if their languages are in the inclusion relation.
The inclusion relation in the languages means that all the
strings that can be matched with the subset expression can
also be matched with the superset expression, e.g., dx C .x.
The algorithm for detecting the inclusion of a pair of regular
expressions is presented in Algorithm 1.

We rely on the finite state automata for detecting the inclu-
sion relationship between two regular expressions. The inputs
are two regular expressions r; and r, which are represented in
strings. We first parses the two regular expressions into finite
automata F; and F5. To determine whether the language that a
regular expression accepts is the subset of another, we simply
determine the intersection of the subset regular expression and
the negation of the superset regular expression is an empty set,

that is _
L(r1) N L(rg) = 0.

Fig. 2 describes the overall workflow for the equivalence
checking. We first convert the regular expressions into the cor-
responding finite state automata and calculate the equivalence
based on testing the two-way inclusion relation. If it passes the
equivalence checking, our tool returns “Verified”; otherwise, it
returns “Failed” with a string generator. This string generator
will output counterexamples which matches one of the two
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Fig. 2. Flowchart of equivalence checking

regular expressions, but not both at the same time. We output
this counterexample for debugging purposes.

We implement the equivalence checker based on an existing
automata tool. We extended greenery 2.0 [18] which is a
python library that provides robust methods for automata
calculation and we tailored the functions for our purpose.

B. Natural Language Processing

Since we also propose a module that can synthesize formal
specifications from natural language descriptions, the key is
to understand the requirement description and synthesize the
corresponding formal specification.

In recent studies, researchers are prone to adopt statistic-
based methods when there are adequate data to train and
test. However, in the situation that lacks training data, rule-
based systems are alternative to statistic-based ones, to store
and manipulate knowledge. The rules are usually based on
the linguistic theories which are considered more efficient in
specific domains since they do not require many computational
resources, and error analysis is easier to perform [19].

In our design, we start with rule-based methods because
of the lack of training dataset. The system is built upon an
extension of a primitive Al prototype called Eliza [20]. Fig. 3
shows the workflow of our specification synthesis module. The
input sentences are processed with a pre-defined script, where
there are two basic types of rules: the decomposition rules
and the reassemble rules. Decomposition rules are made up of
different combinations of keywords. It is used in the tokenizer
where a sentence is chopped into chunks and tagged with a
token just similar to any modern compilers. Next, according
to a set of reassemble rules, which are grammars over the
predefined tokens, we will match each providing sentence
with a specific semantic meaning. Taking advantage of this
semantic meaning, we can synthesize target specifications in
an intermediate let-language we defined. We will detail this
let-language in Section III-B1.

Although Eliza belongs to the first-generation NLP tech-
niques using a primitive rule-based method to understand
users, it works well in specific domains [21], [22]. We have
designed the rule script from an extensive study of the
requirement descriptions in natural languages from various
development documents.

1) Intermediate Representation: In the original framework,
we propose to synthesize the regular specifications directly
from the natural language requirements. However, it can mis-
interpret keywords for different applications; meanwhile, there
exist different syntaxes for regular language as well. Thus,
we add an intermediate level between the natural language
requirements and the specifications to represent the semantics
we extract from the requirements. The semantics in this
level are bound with a property called usage to differentiate
applications. We can also parse it for another round to pre-
process some special terms. It will deal with the problems

such as users describe the numerical range, e.g., for an IPv4
address, not in a digit by digit way. For example, they will
describe [1-2][0-9] as [10-209].

Fig. 4 is the syntax of the intermediate expression and
the each statement in this language consists of two parts:
an operator and an expression. The operator can be the verb
extracted from the natural language that indicates concatenate,
union, kleene, range, negative or position.

Traditionally. programming languages manipulate the value
of variables. The values are typically integers, floats, and
booleans. In natural expressions, we also manipulate the
values, but which are the literal or meta regular expression
character combinations. Specifically, our Natural Expression
for the generation has the following operator types:

Concat. The manipulate with operator “concat” means to
concatenate two expressions of any kinds, literal or meta or
merely variable which is another expression. Concatenation is
a fundamental part of the regular expression syntax. In the
natural language, words like “and”, “follow” or “put A and B
together” have the meaning “concatenate”.

Union. The operator “union” means to create a set for an
expression that is described by either “A” or “B”. In regular
expressions, the symbol to realize this manipulation is “|”.
In natural language, words like “or” or “either...or...” can be
mapped into the union function.

Kleene. The “kleene” is a unary operator. It means to repeat
zero or more times. This corresponds to the Kleene star or
closure in the regular expression syntax. In natural language,
we use words like “repeat” and “for ... times” to describe this
function.

Range. The operator “range” means a set which includes a
set of elements that in a particular range. It could be a number
range or an alphabet range. In regular expression syntax,
“{”A‘-’B“}” does the same operation. In natural language,
we use words like “range in” “from A to B” or “between A
and B” to describe this function.

Neg. The operator “neg” means to match a string that does
not contain the expressions in a particular set. In regular
expression syntax, the symbol to realize this manipulation is
“”A and it is quite simple. In natural language, we use words
like “not” “none of”” or “exclude” to describe this function.

Pos. The operator “Pos” means to match a string that has
a specific expression at position d. It is an atomic predicate
Qa(x), where a is a character and x ranges over the positions
of the matching string. Although, it is not supported in
traditional regular expression but it is very helpful for the
verification language as it can be used to support position
“before” or “after” for specifications.

2) Basic Library and Extended Library: Since we propose
to build an intermediate level, we can build different libraries
to process natural language terms for various applications. A
basic library will be firstly constructed for cases in general
regular expressions and extended libraries. For the prototype,
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we build a default library of high-level abstractions in Natural
Expressions to match some knowledge-based terms in natural
language descriptions. Each high-level abstraction can be
implemented using basic expressions in the Natural Expression
library. As a result, a few high-level abstractions are often
sufficient to achieve what many basic expressions can achieve.
For instance, “letter” stands for “[a-zA-Z]” and “vowel” means
“[aeiou]”. On the other hand, no matter for cognitive search or
representation, descriptions with low Kolmogorov complexity
is of high priority to be chosen by human [23]. Thus, the
utilization of high-level abstraction plays an important role
as it first reduces the search space of the matching process,
second, makes the system more user-friendly.

3) Domain Interpreter: We implement a domain interpreter
that translates the intermediate let-language into the regex-
like specification which is used for equivalence checking. The
domain interpreter is a lex-yacc style parser that parses the
context-free let-language with an LR parser and builds an
abstract syntax tree (AST) based on the grammar. We construct
the interpreter based on PLY, a python implementation of
lex and yacc. We release the source code for the domain
interpreter!. It can be tailored to synthesize regular expressions
directly from the DSL we defined directly as well.

IV. PROTOTYPE

To demonstrate the functionality and usability of the verifi-
cation framework, we build a web application for prototyping
which can be seen in Fig. 5. There are four panels in our
design, which are the Target Regex Panel, Test Case Panel,
Requirement Panel, and Specification Panel. Fig. 5 shows a
snapshot on targeting the use of input validation. Before a
user starts to interact with the web application, a target regular
expression will be provided in the Target Regex Panel and
the corresponding requirements in natural language can be
referred to in a given document.

To conduct a verification task on a target regular expression,
users are supposed to enter the requirements in the Require-
ment Panel. These descriptions should be in a constraint-
based style, and each line only contains one property of the
target regular expression. After receiving the requirements,
our system will automatically synthesize the corresponding
specifications line by line in the Specification Panel. After

Thttps://github.com/s3team/Regex- Verifier/src/Natural- Expression

expression and positive cases will be highlighted which is
similar to most regular expression debugging tools.

Availability. We have released the prototype tool the source
code? for public dissemination.

V. CASE STUDY

Regular expressions are widely used for security purposes,
such as input validation and intrusion detection. It is of critical
importance to verify the correctness of regular expressions
to ensure security. In this section, we will conduct three
case studies on regular expressions for different purposes,
including web input validation, and network intrusion detec-
tion, to demonstrate our proposed framework. These regular
expressions and requirements are collected from online devel-
opment documentation and are currently in practical used by
companies like Microsoft and Cisco.

A. Web Input Validation

Regular expressions are widely used for web input vali-
dation to constrain input, apply formatting rules, and check
lengths. We will examine the regular expression that validates
a strong password. The following example, including the
regular expression and its requirements, comes from Microsoft
technical documentations [24].

(2!7[0-91%$) (2! " [a-zA-2]+*$) " ([a-zA-20-9]{8,10})S

Requirement: The password must be between 6 and 10 char-
acters, contain at least one digit and one alphabetic character,
and must not contain special characters.

The requirement is from the technical document which
is drafted by developers. In his description, there is only
one sentence with a few breaks. The sentence is stated in
a declarative style. Each of the short sentences specifies
a constraint on the target regular expression which is to
be verified. By processing the natural desciption, we find
four propoerties for this regular expression. With a rule-
based natural language processing technique, keywords like
8 to 10, characters, length, at least, numeric
character, alphabetic character, and special
characters are detected and parsed with pre-define gram-
mars. Therefore, corresponding specifications will be gener-
ated respectively:

.{6,10}

(2=.+\d)

(?=.x[a-zA-7])

(?=[a-zA-Z20-9] %)

From 6 to 10 characters in length

must contain at least one numeric character
must contain one alphabetic character

must not contain special characters

2 https://github.com/s3team/Regex- Verifier
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REGEX REQUIREMENT SPECIFICATION
(?17[0-9]*$)(?! N [a-ZA-
Z]*$)"([a-zA-Z0-9]
{6,10})$
TESTING
The password must be between 8 and 10 characters AA;([%_;?}%
contain at least one digit A *.[a-zA-Z.] *$
enduser101 contain at least one alphabetic character A *[a-zA-Z0-9]*
Enduser101 and must not contain special characters >
user101 *
enduserl
user
101
enduser1001
Enduser1001
enduser10@

Fig. 5. A web app for prototyping: (1) Target Regex Panel: Takes in target regular expressions to be verified. (2) Test Case Panel: Takes in test cases to test
the correctness of a target regular expression. (3) Requirement Panel: Takes in natural language requirements for a target regular expression. (4) Specification

Panel: Displays the generated specifications from corresponding requirements.

Then, based on our framework, we will check the equiva-
lence between the target regular expression and the intersection
of generated specifications. For this example, results will show
Verification Failed because of the incorrect length
interval in the target regular expression. That is, the target
regular expression does not conform the requirements.

B. Network Intrusion Detection

Regular expressions are used in intrusion detection/preven-
tion systems to detect special activities. We will examine
two regular expressions in such systems: one is a Cisco IPS
signature that detects Yahoo! Messenger Login [25] and the
other is from a snort rule [26] that detects packets with special
contents.

Bl. Cisco IPS Signature

[Y] [M][S][G][\x00-\xFF]{6}\x00\x54

Requirement: The preceding regular expression detects ASCII
characters Y, M, S, and G followed by any six characters
followed by hex \x00\x54.

There is only one sentence in this requirement that our
natural language processing tool can separate the sentence first
indicated by keywords followed by and the corresponding
specification will be generated:

[Y][M][S]IG].{6}\x00\x54

When we check the equivalence between the two regular
expressions, it returns Verification Failed. That is
because our general library recognizes the keyword any
character and interprets it as a wild card. However, Cisco
uses the hex code to encode characters and compared with
general regular expression systems, any character has a

different meaning in the Cisco system. Therefore, we append
a rule in a new library dedicatedly designed for Cisco IPS
signature that specified a new interpretation of any character.
With this new library loaded, a correct specification can be
synthesized and it returns Verified for this case.

B2. PCRE from a Snort Rule

<OBJECT\s+[">]xclassid\s*=\s*[\x22\x27]?\sxclsid\s*

\x3a\s*A105BD70-BF56-4D10-BC91-41C88321F47C

Requirement: It starts with “<OBJECT” then a few whites-
paces. The next character after the whitespace cannot be
“>”. Following that is “classid” and maybe some space
after it which is optional and “=" then maybe another space
here. Then there is an optional “'” or “"”. Then we have
maybe some whitepace here and “clsid” and maybe some
whitepace here followed by a “:”. After is some optional
spaces and followed by the exact id “A105BD70...".

This requirement is longer than the previous one and it
is also described in a declarative style. In this example, we
notice some interesting observations. First, special characters
like * and : are interpreted with their semantic meanings
in the requirement description but represented as \x22 and
\x27 in the target regular expression. It requires our system
to process the natural language better with a higher level of
abstraction. Therefore, we add new interpretation rules in the
extended library for snort rules which will help us successfully
translate the requirements to the specifications. In addition, we
also observed that complete verification requirements can be
harder to process, both for the users and the system compared
with previous cases. However, there are still some keywords
that we may look for with a rule-based processing system



such as “start with” and “followed by”. By partitioning the
sentence with the assistance of the keywords, requirements
are separated into small pieces, each of which only con-
tains one property of the target regular expression. Since
the requirements are described continuously, specifications are
synthesized one by one accumulatively:

S1: "<OBJECTS$ it starts with “<OBJECT”

S2: S1 + \s+$ then a few whitespaces
S3:82+ (">)$ next character cannot be “>”
S4: 83 + “classid$ following that is “classid”
S5: 84 + \sx$ maybe some space after it
S6: S5 + =3 and “="

S7: S6 + \s$ maybe another space here

S8: 87 + [\x22\x27]1$% then an optional “’” or “"”
S9: S8 + \sx$ then we have some whitepace

S10: 89 + clsids$

S11: S10 + \s*$

S12: S11 + \x3a$

S13: S12 + \s*$

S14: 813 + /A105B. ../

and “clsid”
and maybe some whitepace

“,

followed by a “:
After is some optional spaces
followed by the exact id “A105B...”
Since the specifications are built up accumulatively, the last
specification, S74 contains all the properties that specified in
the previous ones. With the synthesized specifications, the
system will check the equivalence between the target regular
expression and the requirements. In this case, system returns
Verified.

VI. DISCUSSION

In software development, verification enforces consistency
between the current development phase of a software and
the initial requirements. However, formal specifications and
analysis are often very expensive that requires highly qualified
engineers. We propose a conceptual framework to assist with
verifying the correctness of general software developments
according to their requirements; and we instantiate the concep-
tual framework with a specific application, regular expression
verification, to verify its efficiency and usability.

In typical software verification researches, more powerful
languages such as VDM [27] and Z [28] are often used for
formal specification. But in our study, regular expressions are
simple enough that using these specification languages is an
overkill. To verify the correctness of a regular expression,
we can specify it in a regular language. Then if we have
a specification in a regular language, we have a regular
expression already. For an existing regular expression, we
would like to avoid a user to write a specification in a regular
language or more powerful language. Instead, the user can
just tell in natural language what the regular expression should
do, which is sort of software requirement, and then we will
generate the specification and check the conformance between
the implementation (the existing regular expression) and spec-
ification (the synthesized regular expression) automatically.

We not only propose a new approach but also solve
the problem of regex verification. It’s new because it’s the
first preliminary work that proposes to use natural language
to validate regex. Typical specification languages are more
powerful, or in other words, more complicated than regular
languages. So verification of a regex using a specification
in such languages is overkill and potentially makes things
unnecessarily complicated. But if we simply create another
regex according to requirements to act as the specification,

and we’ll simply need to check the equivalence. However, this
solution overlooks the complexity of regular expressions.

There are still some limitations of the current prototype.
The biggest issue is the accuracy of specification synthesis.
Although we have achieved a relatively high accuracy, it is
still the bottleneck for our framework. In our lab study, to
exclude the interferes with the incorrect specification syn-
thesis, researchers interrupted when they noticed any errors
in the requirement descriptions or synthesis outcome and
we conclude with a higher efficiency compared with the
conventional testing method. Additionally, rule-based methods
are not as scalable as statistical-based methods that the former
ones consume more human labor. It is our goal to explore
more on the formal specification synthesis and improve the
performance in the future study.

VII. RELATED WORK

In this section, we summarize related studies regarding our
motivation and corresponding techniques.

A. Regex testing and verification

To verify the correctness of regular expressions, proposed
approaches in previous studies focus on testing and debugging
methods, which solve the problem to some extent but are far
from sufficient. Black-box testing is mostly adopted. Assisted
with various online and offline tools, e.g. regex101 [13], users
can find bugs in regular expressions through a set of test cases.
White-box testing is also discussed by a few researchers that
regular expressions can be visualized, for instance, as graph
structures [15], [29], [30]. Fabian et al. [14] also introduced
the approach that provides advanced visual highlighting of
matches in a sample text. However, these techniques rely on
test cases where the test set explosion problem still remains.
Another issue with white-box testing is that it relies on the
constructed regular expression which neglects the properties
that specified in the requirements.

Naturally, we think of verification techniques which check
the required properties based on mathematical proof but not
dynamic test cases. However, only a few studies have been
done on regular expressions. Existing papers mostly focus
on verification of the syntax level properties. Static program
analysis techniques like type systems [12] are adopted for
exception detection for regular expressions, e.g. IndexOutOf-
Bound, at the compile time. According to our knowledge, there
is no previous work on verifying semantic level properties for
regular expressions.

B. Formal Language Synthesis

Program synthesis has been widely used in many situa-
tions. These situations can all be called a specific domain
respectively, where program synthesis could take place. Maoz,
Ringert, and Rumpe [31] have solved the NP-hard synthesis
problem of the satisfied component and connector model in a
bounded scope under some specifications. Gulwani [32] pro-
poses a concrete case of program synthesis as an application
for the Microsoft spreadsheet. Singh, Gulwani, and Solar-
Lezama [33] show another case that program synthesis is
utilized as a method to generate feedback for some simple
coding assignments of the introductory programming courses.



Synthesis from natural language was proposed more than a
decade ago. In the past few years, researchers devoted more
effort to the domain-specific program synthesis, for instance,
shell scripts [34], network configuration file [22], games [34],
and regular expressions [35], [36] etc. They focus on how to
make less ambiguity in the program synthesis from a more
abstract language for different purposes.

VIII. CONCLUSION

We have presented a lightweight verification framework for
regular expressions in this paper. It is based on an equivalence
checking method between formal specifications and the target
regular expressions. To enhance the usability of the proposed
framework, we incorporated a specification synthesis module
which automatically generates specifications in formal lan-
guage from natural language descriptions of the requirements.
We have built a prototype for the proposed framework and
conducted case studies for evaluation. We have also made
our tool available and released the source code for public
dissemination.
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